Electrostatic vs Hyperconjugative Effects as Stereoinductive Factors in the Adamantane Ring System¹

William Adcock,* Jason Cotton, and Neil A. Trout

School of Physical Sciences, The Flinders University of South Australia, Adelaide, Australia 5001

Received August 10, 1993 (Revised Manuscript Received December 13, 1993[®])

A series of 5-substituted (X) adamant-2-yl derivatives 1 (Y = O and CH_2) have been synthesized and their ¹³C NMR spectra measured. The carbonyl and ethylenic ¹³C substituent chemical shifts (SCS) are shown to be proportional to substituent field effects ($\sigma_{\rm F}$). By use of the polar field susceptibility parameter ($\rho_{\rm F}$) for the former shifts, polar field parameters ($\Delta \sigma_{\rm F}$ values) have been calculated for a series of p-SC₆H₄ substituents. II-Facial diastereoselectivities for the reduction (NaBH₄) and methylation (MeLi) of para-substituted (S) phenyl derivatives of 1 (Y = O; X = p-SC₆H₄) and, as well, for the hydrochlorination of similarly substituted alkenes 1 ($Y = CH_2$; $X = p-SC_6H_4$) have been determined and correlated successfully against polar field parameters ($\Delta \sigma_{\rm F}$ values). The slopes of these plots $(\log_{10} [Z]/[E] vs \Delta \sigma_F)$ provide polar-field susceptibility parameters (ρ_{FS}) which have been deployed to calculate appropriate diastereoselectivities of the aforementioned reactions for 5-substituted (X) derivatives of 1 (Y = O and CH_2) in general. A comparison of these calculated values with observed diastereoselectivities for a wide range of substituents reveals that direct electrostatic field interactions play a dominant role in governing the phenomena for nucleophilic additions of the ketones 1 (Y = O) and that it is unnecessary to invoke Cieplak's transition-state hyperconjugative model. This appears to be also the case for electrophilic additions to $1 (Y = CH_2)$ not involving final nucleophilic capture of an intermediate cation. However, hyperconjugation clearly impinges significantly on II-facial diastereoselectivity for those reactions mediated by 2-adamantyl cations. New results for *methyl*-substituted derivatives of 1 (Y = O and CH₂, X = CH₃) reinforces the σ -electron-withdrawing character of this substituent with respect to γ - and δ -interactions in the neutral ground-state and cationic species.

Introduction

Π-Facial stereoselectivity by various reagents in nucleophilic, electrophilic, radical, and cycloaddition reactions to trigonal carbon centers continues to attract considerable theoretical and experimental attention.²⁻⁷ Although model system studies have clearly demonstrated the importance of long-range electronic effects as a factor which impacts significantly on the diastereoselectivity of nucleophilic addition reactions,³⁻⁶ the nature of the electronic interaction remains controversial. On the one hand, there are advocates of a hyperconjugative model^{4,5a-6,6}

and, in particular, the Cieplak orbital version,^{2,8,9} which emphasizes the importance of the interaction between the best electron-donor bonds *antiperiplanar* to the σ^* orbital of the incipient bond in the transition state. On the other hand, there are adherents³ and recent converts^{5f} of an electrostatic field model which simply focuses on stabilizing and destabilizing coulombic interactions. Current literature trends tend to favor the former model.

Prominent amongst the model system studies is the seminal work of le Noble et al.⁴ in which 5-substituted (X) adamant-2-yl derivatives 1 have been deployed as stereochemical probe substrates. These stereochemically well-

defined model systems seem ideal for assessing electronically-induced II-facial selectivities since conformational uncertainties are avoided and, moreover, there is no steric bias. Thus, electronic effects can be delineated unambiguously. Several studies by le Noble et al.⁴ of a variety of reactions indicate that the reagent prefers to attack the face which is *antiperiplanar* to the more electron-rich vicinal bonds (*zu* and *en* face preference in 1 when X equals an electron-withdrawing and -donating group, respectively). This generalization has been reconciled exclusively within Cieplak's transition-state hyperconjugation model.⁸ Central to this interpretation is the observation of a good linear Hammett type plot (log [Z]/[E] vs σ_p) for the NaBH₄

[•] Abstract published in Advance ACS Abstracts, March 1, 1994. (1) Reported in part at the 11th IUPAC Conference on Physical Organic

<sup>Chemistry, Ithaca College, Ithaca, NY, 2-7 Aug, 1992.
(2) Cieplak, A. S.; Tait, B.; Johnson, C. R. J. Am. Chem. Soc. 1989, 111, 8447 and references cited therein.</sup>

^{(3) (}a) Wu, Y.-D.; Tucker, J. A.; Houk, K. N. J. Am. Chem. Soc. 1991, 113, 5018 and references cited therein. (b) Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 10, 638 and references cited therein. (c) Wu, Y.-D.; Houk, K. N.; Paddon-Row, M. N. Angew. Chem., Int. Ed. Engl. 1992, 31, 1019 and references cited therein.

^{(4) (}a) Cheung, C. K.; Tseng, L. T.; Lin, M. H.; Srivastava, S.; le Noble,
W. J. J. Am. Chem. Soc. 1986, 108, 1598; 1987, 109, 7239. (b) Bodepudi,
V. R.; le Noble, W. J. J. Org. Chem. 1991, 56, 2001 and references cited
therein. (c) Hahn, J. M.; le Noble, W. J. J. Am. Chem. Soc. 1992, 114,
1916. (d) Mukherjee, A.; Venter, E. M. M.; le Noble, W. J.; Watson, W.
H.; Kashyap, R. P. Tetrahedron Lett. 1992, 33, 3837.

<sup>H.; Kashyap, R. P. Tetrahedron Lett. 1992, 33, 3837.
(5) (a) Mehta, G.; Khan, F. A. J. Am. Chem. Soc. 1990, 112, 6140. (b)
Mehta, G.; Khan, F. A. J. Chem. Soc., Chem. Commun. 1991, 18;
Tetrahedron Lett. 1992, 33, 3065. (c) Mehta, G.; Praveen, M. Tetrahedron
Lett. 1992, 33, 1759. (d) Mehta, G.; Khan, F. A.; Ganguly, B.; Chandrasekhar, J. J. Chem. Soc., Chem. Commun. 1992, 1711. (e) Kumar, V.
A.; Venkatesan, K.; Ganguly, B.; Chandrasekhar, J.; Khan, F. A.; Mehta,
G. Tetrahedron Lett. 1992, 33, 3060. (f) Ganguly, B.; Chandrasekhar, J.;
Khan, F. A.; Mehta, G. J. Org. Chem. 1993, 58, 1734.</sup>

^{(6) (}a) Halterman, R. L.; McEvoy, M. A. J. Am. Chem. Soc. 1990, 112, 6690.
(b) Halterman, R. L.; McEvoy, M. A. Tetrahedron Lett. 1992, 33, 753; J. Am. Chem. Soc. 1992, 114, 980.
(c) Halterman, R. L.; McCarthy, B. A.; McEvoy, M. A. J. Org. Chem. 1992, 57, 5585 and references cited therein.

reductions of para-substituted (S) 5-phenyl-2-adamantanones 1 (Y =); X = p-SC₆H₄).^{4a,10}

Recently, in an attempt to provide insight into the nature of polar substituent effects and their modes of transmission between the 2 and 5 (or 1 and 4) positions of the adamantane ring system, we presented ¹⁹F substituent chemical shift (SCS) data for a limited series of (E)- and (Z)-5-substituted (X) adamant-2-yl fluorides (2 and 3, respectively).¹¹ ¹⁹F chemical shifts are appropriate electronic probes for this purpose since for alkyl fluorides they respond sensitively to the extent of delocalization of electrons from neighboring antiperiplanar carbon-carbon bonds into the σ^* orbital of the C–F bond.¹² Inter alia two revelations from this study¹¹ are noteworthy. Firstly, the p-anilino substituent was shown to be a σ -electronwithdrawing group which induces preferential zu or syn attack by nucleophiles in 1 (Y = $O, X = p - NH_2C_6H_4$). This result was diametrically opposed to a previous report by le Noble et al.^{4a} However, a subsequent revisit of the NaBH₄ reduction of 1 (Y = O; X = p-NH₂C₆H₄) by the latter workers confirmed our findings.¹⁰ Secondly, the substituent (X) at C_5 in the adamantane ring system is shown unambiguously to induce a substantial differential in the electron-donating ability of the vicinal bonds ($C_{1,9}$) and $C_{3,4}$ vs $C_{1,8}$ and $C_{3,10}$) flanking the probe or reaction site (C_2) . Moreover, the polar substituent effect is clearly hyperconjugative in origin (an electronegativity effect (σ_r)). This disclosure coupled with the knowledge gained from a previous study of the electronic behavior of $p-SC_6H_4$ groups by means of the 4-fluorobicyclo[2.2.2]octyl tag as a sensitive monitor $(4, X = p - SC_6H_4)^{13}$ led us to raise doubts regarding le Noble et al.'s4a,10 interpretation of the aforementioned Hammett plot. We speculated that it may be a manifestation of an electrostatic field influence ($\sigma_{\rm F}$ effect) rather than hyperconjugation (σ_{x} effect).¹¹

More recently,¹⁴ an expanded study of an extensive series of 2 and 3 covering a wide range of electronic substituent effects has strongly reinforced our doubts concerning the origin of the successful Hammett-type plot $(\log [Z]/[E])$ vs σ_p) proposed by le Noble et al.^{4a,10} The question that needs to be answered then is whether or not the differential induced by the C5-substituent in the hyperconjugative electron-donating ability of the vicinal bonds flanking C2,

(9) For a general discussion of the various models proposed to explain face selection by reagents adding to trigonal carbon centers see: Li, H.;

le Noble, W. J. Recl. Trav. Chim. Pays-Bas 1992, 11, 199.
(10) Li, H.; le Noble, W. J. Tetrahedron Lett. 1990, 31, 4391.
(11) Adcock, W.; Trout, N. A. J. Org. Chem. 1991, 56, 3229 and

references cited therein. (12) (a) Adcock, W.; Abeywickrema, A. N. J. Org. Chem. 1982, 47, 2957 1985, 50, 1538. (c) Adcock, W.; Kok, G. B. J. Org. Chem. 1987, 52, 356 and references cited therein. (d) Adcock, W.; Iyer, V. S. J. Org. Chem. 1988, 53, 5259 and references cited therein.

(13) Adcock, W.; Abeywickrema, A. N. J. Org. Chem. 1982, 47, 2945. (14) Adcock, W.; Trout, N. A. To be published.

which is clearly revealed by the 19 F SCS of 2 and 3, 11,14 effects a difference in the relative stabilities of the diastereomeric transition states for nucleophilic additions (hydride reduction and methylation) of 1 (Y = O).

The purpose of the work reported in this paper was several fold. Firstly, we wished to deploy ¹³C NMR chemical shifts as sensitive charge density monitors to evaluate the transmission of polar substituent effects between the 2 and 5 (or 1 and 4) positions of the adamantane ring system. Since a previous study¹⁵ in the bicyclo[2.2.2] octane ring system suggested that the ethylenic and carbonyl groups are appropriate probes, their ¹³C SCS follow the field effect of substituents ($\sigma_{\rm F}$) closely with no evidence for any significant electronegativity effect (σ_x) , we have synthesized and measured the ¹³C NMR spectra of an extensive series of 1 (Y = O and CH_2). We were hopeful that carbon-13 and fluorine-19 nuclei as electronic probes would complement one another in the adamantane ring system since the former monitor exclusively through-space electrostatic field effects¹⁵ and the latter predominantly through-bond effects.^{11,12,14} Secondly, we were anxious to verify our earlier speculation (see above)¹¹ regarding the origin of the diastereoselectivity correlation (log [Z]/[E] vs σ_p) for 1 (Y = O; X = p-SC₆H₄).^{4a,10} If correct, then linear plots of log [Z]/[E]vs $\Delta \sigma_F$ for 1 (Y = O and CH₂; X = p-SC₆H₄) should provide polar-field selectivity-susceptibility parameters (ρ_{FS}) for the reduction and methylation of 1 (Y = O) as well as for the hydrochlorination of 1 ($Y = CH_2$). Accordingly, we have synthesized an appropriate series of 1 (Y = O and CH_2 ; X = p-SC₆H₄) and measured their diastereoselectivities (Z/E) with respect to reduction (NaBH₄), methylation (MeLi), and hydrochlorination in order to effect the appropriate correlations. Finally, we wanted to utilize the aforementioned ρ_{FS} values to calculate polar-field induced diastereoselectivities $(\log_{10} [Z]/[E] = \rho_{FS}\sigma_F)$ of 1 $(Y = O and CH_2)$ for a diverse range of groups. We were hopeful that a comparison of these calculated values with the experimentally observed product distributions would allow a quantitative evaluation of electrostatic vs hyperconjugative effects as stereoinductive factors in the adamantane ring system. This assessment is important since the validity of transition-state hyperconjugation in terms of Cieplak's model⁸ is strongly underpinned by the diastereoselectivity data from this excellent model substrate. Given the sheer size of the adamantane ring system. model system studies of the kind described herein seem most appropriate as the application of computational methods are severely tested.

Herein we report the results of our study.

Results and Discussion

¹³C NMR Study. In Table 1 we list the ¹³C SCS for the carbonyl carbon (C2) of 1 (Y = O), together with the same parameters for C_{α} (or C2) and C_{β} (or C11) for 1 (Y = CH₂). A linear least-squares regression analysis of these shifts (carbonyl SCS for p-SC₆H₄ groups where S = CN, COOCH₃, F, Br, OCH₃, and NMe₂ were omitted from the data set) give correlations with $\sigma_{\rm F}(\equiv \sigma_{\rm I})^{12}$ of reasonable precision (eqs 1-3). It is possible that the precision of fit is compromised slightly by the influence of a very weak electronegativity effect (σ_x ; double hyperconjugation). In

^{(7) (}a) Frenking, G.; Köhler, K. F.; Reetz, M. T. Tetrahedron 1991, 47, 8991; Tetrahedron 1991, 47, 9005; Angew. Chem., Int. Ed. Engl. 1991, 30, Sysi, 1 etranearon 1991, 47, 5005; Angew. Chem., Int. Ed. Ling. 1991, 30, 1146 and references cited therein. (b) Coxon, J. M.; McDonald, D. Q. Tetrahedron Lett. 1992, 33, 651; Tetrahedron 1992, 48, 3353. (c) Pudzianowski, A. T.; Barrish, J. C.; Spergel, S. H. Tetrahedron Lett. 1992, 33, 293. (d) Halton, B.; Boese, R.; Rzepa, H. S. J. Chem. Soc., Perkin Trans. 2 1992, 447 and references cited therein. (e) Paquette, L. A.; Underimer, T. L.; Gallucci, J. C. J. Org. Chem. 1992, 57, 86 and references cited therein. (f) Damm, W.; Giese, B.; Hartung, J.; Hasskerl, T.; Houk, K. N.; Hüter, O.; Zipse, H. J. Am. Chem. Soc. 1992, 114, 4067 and references cited therein. (g) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1990, 112, 1136 and references cited therein. (h) Wu, Y.-D.; Li, Y.; Na, J.; Houk, K. N. J. Org. Chem. 1993, 58, 4625 and references cited therein. (i) Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1993, 115, 9614 and references cited therein. (j) Coxon, J. M.; Luibrand, R. T. Tetrahedron Lett. 1993, 34, 7097. (8) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540.

⁽¹⁵⁾ Adcock, W.; Butt, G.; Kok, G. B.; Marriott, S.; Topsom, R. D. J. Org. Chem. 1985, 50, 255.

Stereoinductive Factors in the Adamantane Ring System

Table 1. ¹³C Substituent Chemical Shifts $(SCS)^{a,b}$ for Some 5-Substituted (X) Adamant-2-yl Derivatives 1 (Y = O and CH.)

	Y = 0	Y =	CH ₂			
x	CO¢	Cad	C_{β}^{e}			
NO ₂	-5.11					
CN	-4.81	-5.08	3.08			
COOCH ₃	-2.13	-2.56	1.45			
$CONH_2$	-1.89					
OCH ₃	-1.86	-2.74	1.82			
OCOCH ₃	-3.00					
F	-3.67	-4.32	2.89			
Cl	-3.66	-4.62	2.83			
Br	-3.97	-4.83	3.01			
I	-4.18	-4.74	3.04			
$N(CH_3)_2$	-0.72					
CH ₃	0.24	-0.76	0.22			
C_6H_5	-0.52 (0.00) ^f	-1.46	0.90			
$p-NO_2C_6H_4$	$-1.90(-1.38)^{f}$					
p-CNC ₆ H ₄	-1.79 (-1.27) ^f	-2.46	1.54			
p-COOCH ₃ C ₆ H ₄	-1.19 (-0.67)					
p-FC ₆ H ₄	-0.87 (-0.35) ^f	-1.77	1.06			
p-BrC ₆ H ₄	-1.14 (-0.62)/	-1.94	1.18			
p-CH ₃ OC ₆ H ₄	-0.44 (0.08) ^f					
$p-(CH_8)_2NC_6H_4$	-0.08 (0.44) ^f					
Si(CH ₃) ₃	0.29	0.22	-0.41			
$Sn(CH_3)_3$	-0.23	-0.05	-0.30			

^a Solvent, CDCl₃. ^b Accurate to ± 0.05 ppm. ^c X = H, 218.43 ppm relative to Me₄Si. ^d X = H, 158.48 ppm relative to Me₄Si. ^e X = H, 100.57 ppm relative Me₄Si. ^f SCS of *p*-SC₆H₄ groups based on the phenyl derivative as parent (1, X = C₆H₅).

13
C SCS (C2 of 1, Y = O) = $-9.27\sigma_{\rm F} + 0.49$

 $(\text{CDCl}_3; r = 0.968, \text{F-test} = 210.88, \text{CL} = 99.99\%,$ n = 16) (1)

12- ----

$$^{13}\text{C SCS} (\text{C}_{\alpha} \text{ of } 1, \text{ Y} = \text{CH}_2) = -10.29\sigma_{\text{F}} + 0.13$$

$$(\text{CDCl}_3; r = 0.977, \text{F-test} = 253.82, \text{CL} = 99.99\%,$$

 $n = 14)$ (2)

 13 C SCS (C_{β} of 1, Y = CH₂) = 7.01 $\sigma_{\rm F}$ - 0.30 (CDCl₃; r = 0.975, F-test = 231.77, CL = 99.99%, n = 14) (3)

this regard, the recent report of significant ${}^{4}\Delta$ deuterium isotope effects in 1 (Y = O and CH₂; X = D) is pertinent.¹⁶ Although the problem of disordered crystals has precluded crystal structure analysis of simple substituted adamantanes,^{17,18} other X-ray diffraction analyses¹⁸ suggest that 5-substituents should not induce significant skeletal distortions at C2.

It can be seen from the regression equations that the polar susceptibility parameters ($\rho_{\rm F}$ values) are quite large (-9.27, -10.29, and 7.01; eqs 1, 2, and 3, respectively) and highlight the importance of Π polarization of these groups as a result of polarization of the II electrons of the C=O and C=CH₂ linkages (C^b = O^b + and C^b = CH₂^{b+}, respectively) by an electrostatic-field effect transmitted through space.¹⁵ Noteworthy in this regard are the opposing signs of the $\rho_{\rm F}$ values of C_a and C_b of 1 (Y =

CH₂). The ¹³C SCS for these two carbons correlate against one another with a very high precision of fit (r = 0.996, F-test = 1513.19, CL = 99.99%, n = 14).

By use of multiple linear least-squares analysis, the carbonyl ¹³C SCS of p-SC₆H₄ groups in 1 (Y = O; listed in parentheses in Table 1) correlate very well with substituent parameters ($\sigma_{\rm F}$ and $\sigma_{\rm R}$).¹⁹ The data set fulfills Taft's recommended minimal substituent set for such multiple correlations.¹⁹ The correlative equation (eq 4)

¹³C SCS (C2 of 1, Y = 0; X =
$$p$$
-SC₆H₄) =
-1.44 $\sigma_{\rm F}$ - 1.52 $\sigma_{\rm R}$ - 0.22

$$(\text{CDCl}_3; r = 0.991, \text{F-test} = 112.64, \text{CL} = 99.97\%,$$

 $n = 7)$ (4)

shows that both polar and resonance effects contribute to the ¹³C SCS. Thus, the net electric field acting to polarize the C=O linkage is the result of fields associated with the substituent dipole (primary field) and the charges induced in the benzene ring by the substituent (secondary field). It is important to note that since the latter charges are due to both polar and resonance effects, the statistical factorization does not provide a distinct separation of the two contributing electric fields. Hence, the $\rho_{\rm F}\sigma_{\rm F}$ term embodies the effects of the primary field as well as a contribution from the effects of field-induced Π polarization of the aromatic ring. Interestingly, the blend of the susceptibility parameters for the correlation (eq 4; $\rho_{\rm R}/\rho_{\rm F} = 1.06$) is significantly different from that observed for the corresponding correlation of the ¹⁹F SCS of 4 (X = p-SC₆H₄; $\rho_{\rm R}/\rho_{\rm F} = 0.58$).¹³ This result highlights a major difference between the two model systems. Thus, whereas in 4 the substituent and the CF bond are both aligned along the major axis of the ring system, no such alignment occurs in 1 (Y = O). Consequently, orientational factors for the various charges and dipoles are quite different for both systems and, in particular, difficult to specify for 1. Moreover, solvent intrusion into the space between the substituent and probe is probably also different for both systems. This could impact significantly on the respective effective dielectric constants.²⁰ An important ramification of this insight is that substituent constants for pendant groups (p-SC₆H₄, Me₃Sn, etc.), defined from model systems with strict linear geometry (e.g., 4) may not be appropriate for systems where the alignment is drastically different (e.g., 1).

Because the carbonyl ¹³C SCS of the *para*-substituted (S) 5-phenyl-2-adamantanones 1 (Y = O; X = p-SC₆H₄) respond sensitively and systematically to the electronic effect of the *para*-substituent (S), these are excellent data for setting up an empirical scale of $\Delta \sigma_{\rm F}$ values for p-SC₆H₄ substituents applicable to the 2,5-disposition of the adamantane ring system in general. By use of the appropriate ¹³C SCS (Table 1) and $\rho_{\rm F}$ value (-9.27; eq 1) the following constants ($\Delta \sigma_{\rm F}$) may be calculated: p-NO₂-C₆H₄, 0.150; p-CNC₆H₄, 0.138; p-COOH₃C₆H₄, 0.073; p-FC₆H₄, 0.038; p-BrC₆H₄, 0.067; p-CH₃OC₆H₄, -0.009, p-Me₂NC₆H₄, -0.048.

Stereoselectivity Studies. (a) Polar-Field Selectivity-Susceptibility Parameters (ρ_{FS}). The diaste-

⁽¹⁶⁾ Vinkovic, V.; Mlinarú-Majerski, K.; Marinic, Z. Tetrahedron Lett. 1992, 33, 7441.

^{(17) (}a) See ref 13 of ref 17b. (b) Laulee, T.; Stilz, H. U. J. Am. Chem. Soc. 1987, 109, 5876.

 ^{(18) (}a) Lin, M.-h.; Watson, W. H.; Kashyap, R. P.; le Noble, W. J. J.
 Org. Chem. 1990, 55, 3597. (b) Li, H.; Silver, J. E.; Watson, W. H.; Kashyap,
 R. P.; le Noble, W. J. J. Org. Chem. 1991, 56, 5932.

⁽¹⁹⁾ Bromilow, J.; Brownlee, R. T. C.; Lopez, V. O.; Taft, R. W. J. Org. Chem. 1979, 44, 4766.

⁽²⁰⁾ Kirkwood, J. G. J. Chem. Phys. 1934, 2, 351. Kirkwood, J. G.; Westheimer, F. H. Ibid. 1938, 6, 506, 513; Ibid. 1939, 7, 437. Ehrenson, S. J. Phys. Chem. 1977, 81, 1520.

Table 2. Product Distribution in the Reduction (NaBH₄) and Methylation (MeLi) of *para*-Substituted (S) 5-Phenyl-2-adamantones 1 (Y = O; X = p-SC₆H₄)

S	redu	ction ^a	methylation ^b	
	% E	% Z	% E	% Z
Н	58 (59)	42 (41)	62	38
NO_2	68 (66)	32 (34)		
CN	66 (65)	34 (35)	72	28
COOCH ₃	c (64)	c (36)	68	32
F	63 (65)	37 (35)	67	33
Br	64 (65)	36 (35)	68	32
OCH ₃	59 (60)	41 (40)	59	41
$N(CH_3)_2$	57 (57)	43 (43)	57	43

^a Ratios determined by ¹H and ¹³C NMR. The results of the latter are listed in parentheses. Values given for the former are the average of two determinations measured at 300 and 500 MHz. ^b Ratios determined by ¹³C NMR. ^c Could not be determined because of the coincidence of C₂H and CH₃ peaks in the ¹H NMR spectrum.

reoselectivities (Z/E) for the NaBH₄ reduction and methylation of a series of para-substituted (S) 5-phenyl-2-adamantanones 1 (Y = O; X = p-SC₆H₄) are presented in Table 2. It should be noted that the new data (reduction) for the C_6H_5 and p-NO₂ C_6H_4 substituents are in accord with those previously reported.^{4a,11} The plots in Figures 1 and 2 show that the logarithms of [Z]/[E] correlate well linearly with the respective $\Delta \sigma_{\rm F}$ values (see above), thereby confirming that the stereochemical outcome of these nucleophilic addition reactions is governed by the electrostatic field influence of the remote substituent; i.e., the relative stabilities of the two diastereomeric transition states for syn and anti additions is predominantly determined by electrostatic interactions. The relative magnitude of the ρ_{FS} values (-1.01 vs -1.61) highlights the ability of the methylation reaction to differentiate more than hydride reduction. This has been noted previously by le Noble et al.²¹ and Mehta et al.^{5a,c} but in a less formalized manner. We believe the phenomenon is probably a manifestation of greater charge development in the transition-state for methylation versus that for reduction (i.e., late vs early transition state, respectively). However, the possibility of electrostatic effects being transmitted more effectively in solvents of lower polarity²⁰ $(C_2H_5)_2Ovs CH_3OH)$ cannot be entirely ignored (see later).

The product distributions for the hydrochlorination of a limited series of 2-methylene-5-(*para*-substituted (S) phenyl)adamantanes 1 (Y = CH₂; X = *p*-SC₆H₄) in CH₂-Cl₂ and NO₂CH₃ are set out in Table 3. An excellent correlation is observed (Figure 3) between the log₁₀ [Z]/[E] values for CH₂Cl₂ as solvent and $\Delta \sigma_F$. Thus, diastereofacial selectivity for electrophilic addition in this weakly polar solvent ($\epsilon = 8.9$) is strongly controlled by the electrostatic field resulting from the substituent (S)-induced charges and dipoles in the benzene ring. Given that HCl addition to alkenes in CH₂Cl₂ is mediated by the formation of intimate ion pairs^{22,23} (5 and 6 from 1, Y = CH₂) whose relative stabilities are largely governed by hyperconjugation, the electric field dependency (Figure 3) can be explained in terms of preferential field-induced suppression or enhancement of stabilizing charge dispersal in the product-determining transition state proceeding from 6(*E* species). This explanation seems to be supported by

the fact that in NO₂CH₃, a highly polar solvent ($\epsilon = 37.5$), the diastereoselectivity for HCl addition to 1 ($Y = CH_2$; $X = p-SC_6H_4$) is essentially indifferent to the electronic character of the substituent on the phenyl ring ($\rho_{FS} \approx 0$; Table 3). Apparently, the fields exerted by the charges and dipoles in the benzene ring, which are on the edge of the molecular cavity, now act through regions of much higher effective dielectric constant²⁰ and, therefore, are effectively dampened to zero. The effect of charges in the molecular cavity (e.g., at C5) remain unperturbed as evidenced by the similar diastereoselectivity in CH₂Cl₂ and NO₂CH₃ for addition to 1 (Y = CH₂) when X = C_6H_5 (Table 3). However, it is important to bear in mind that there is a mechanistic distinction for HCl addition in CH₂- Cl_2 vs NO_2CH_3 . Whereas for the former the reaction involves the formation of tight ion pairs, in the latter free ions are expected to mediate the reaction (7 and 8 from 1, $Y = CH_2$). NMR²⁴ and reactivity studies^{4a} have shown that free tertiary 2-adamantyl cations rapidly equilibrate to a pair of epimeric ions $(Z^+ \text{ and } E^+; 7 \text{ and } 8,$ respectively);²⁵thus, a preequilibrium step occurs prior to

product formation in the addition of HCl to 1 ($Y = CH_2$) in NO₂CH₃. This transformation is shown in Scheme 1.

Scheme 1

$$(E)-\operatorname{Cl} \stackrel{k_3}{\leftarrow} E^+ \stackrel{k_1}{\underset{k_2}{\rightleftharpoons}} Z^+ \stackrel{k_4}{\rightarrow} (Z)-\operatorname{Cl}$$

A general equation has been derived for such a situation which relates the product ratio $(P_{\infty} = [(Z)-Cl]/[(E)-Cl])$ with the equilibrium constant $(K = k_1/k_2)$ and the

^{(21) (}a) Lin, M.-h.; Silver, J. E.; le Noble, W. J. J. Org. Chem. 1988, 53, 5155.
(b) Xie, M.; le Noble, W. J. J. Org. Chem. 1989, 54, 3836.
(22) Dewar, M. J. S.; Fahey, R. C. Angew. Chem., Int. Ed. Engl. 1964, 2014

⁽²²⁾ Dewar, M. J. S., Faney, R. C. Angew. Chem., Int. Ed. Engl. 1 3, 245.

^{(23) (}a) Although the stereochemistry of the addition of hydrogen chloride to alkenes is usually discussed in terms of the formation of a cationic intermediate (Adg2 mechanism),^{23b} limited studies have revealed higher order kinetics in aprotic solvents which suggest that a termolecular process (Adg3)^{23b} may also be important. However, higher order kinetics is also consistent with addition through ion-pair or free-ion intermediates.^{23c} (b) Fahey, R. C. In *Topics in Stereochemistry*; Eliel, E. L., Allinger, N. L., Eds.; John Wiley & Sons, Inc.: New York, 1968. (c) Pocker, Y. J. Chem. Soc. 1960, 1292.

^{(24) (}a) Finne, E. S.; Gunn, J. R.; Sorensen, T. S. J. Am. Chem. Soc.
1987, 109, 7816. (b) Dutler, R.; Rauk, A.; Sorensen, T. S.; Whitworth, S. M. J. Am. Chem. Soc. 1989, 111, 9024. (c) Buffam, D. J.; Sorensen, T. S.; Whitworth, S. M. Can. J. Chem. 1990, 68, 1889.

^{(25) (}a) For expedience, structures 7 and 8 are drawn in an abbreviated form, but it is implicit that any full description of these ions must include the solvent and/or counterion as indicated by Sorensen et al.^{24a} One reviewer remains unconvinced that the 2-methyl-2-adamantyl cation is a nonplanar species and suggests that ion-pair phenomena is probably responsible for its unusual behavior.^{24a} However, it is important to note that the ¹Jis_{Ce}-H constant for this tertiary cation strongly implies that the C⁺ center is significantly distorted from planarity^{22b} (ca. 36°; we thank Dr. D. P. Kelly for kindly providing us with this information). (b) Kelly, D. P.; Aherne, K.; Delgado, F.; Giansiracusa, J. J.; Jensen, W. A.; Karavokiros, R. A.; Mantello, R. A.; Reum, M. E. J. Am. Chem. Soc. 1993, 115, 12010.

Figure 1. Plot of $\log_{10} [Z]/[E]$ for the NaBH₄ reduction of *para*-substituted (S) 5-phenyl-2-adamantanones 1 (Y = O; X = *p*-SC₆H₄) versus $\Delta \sigma_F$ (y = -1.021x - 0.169, r^2 = 0.945).

Figure 2. Plot of $\log_{10}[Z]/[E]$ for the methylation (CH₃Li) of *para*-substituted (S) 5-phenyl-2-adamantanones 1 (Y = O; X = *p*-SC₆H₄) versus $\Delta \sigma_F$ (y = -1.635x - 0.206, r^2 = 0.949).

individual rate constants (eq 5).²⁶

$$P_{\infty} = K \frac{k_4(k_1 + k_2 + k_3)}{k_3(k_1 + k_2 + k_4)} \tag{5}$$

Because the available evidence suggests that the equilibration step is rapid, a reasonable assumption is that k_1 , $k_2 \gg k_3$, k_4 , and therefore, eq 5 reduces to eq 6. Thus, the relative stability of the epimeric cations 7 and 8, which is governed predominantly by hyperconjugation, impinges

 $P_{\infty} = K \frac{k_4}{k_3} \tag{6}$

importantly on facial selectivity in NO₂CH₃. Therefore, the major factor governing the diastereoselectivity of electrophilic addition in the two solvents (CH₂Cl₂ and NO₂-CH₃) is the same. An important difference, however, is that stabilization by hyperconjugation should be more pronounced for 7 and 8 than 5 and 6 because of the charge localizing influence of the anion in the latter species.

(b) Calculated Polar-Field Induced II-Facial Selectivities vs Experimentally Observed Product Dis-

⁽²⁶⁾ Zefirov, N. S. Tetrahedron 1977, 33, 2719.

Figure 3. Plot of $\log_{10}[Z]/[E]$ for the hydrochlorination (CH₂Cl₂ as solvent) of 2-methylene-5-(para-substituted (S) phenyl) adamantanes 1 (Y = CH₂; X = p-SC₆H₄) versus $\Delta \sigma_F$ (y = 2.502x + 0.37, r² = 0.986).

Table 3. Product Distribution for the Hydrochlorination of 2-Methylene-5-(para-substituted (S) phenyl)adamantanes $1 (Y = CH_2; X = p - SC_6H_4)$

	$CH_2Cl_2^a$		NO_2	CH₃ª		CH ₂	Cl_2^a	NO_2	CH₃ª
s	% E	% Z	% E	% Z	\mathbf{s}	% E	% Z	% E	% Z
H٥	35	65	34	66	OCH ₃	30	70	42	58
F	25	75	39	61	CN ^b	16	84	32	68
Br	23	77	32	68					

^a Ratios determined by ¹³C NMR. ^b Values given are the average of two determinations, which agreed within 1% in each case.

tributions. By use of the ρ_{FS} values derived above, the known appropriate $\sigma_{\rm F}$ values^{11,12} and the Hammett-type equation (log $[Z]/[E] = \rho_{FS}\sigma_{F}$), polar-field induced Π -facial selectivities have been determined for the aforementioned nucleophilic and electrophilic additions reactions of 1 (Y = O and CH_2 , respectively). These are listed in Tables 4-6 together with the experimentally observed product distributions. A scrutiny of the data for nucleophilic addition (Tables 4 and 5) reveals that in several instances, mainly for weak to moderately polar groups ($\sigma_{\rm F} < 0.30$), there is good agreement between the calculated and observed results. However, for strongly polar substituents $(\sigma_{\rm F} > 0.30)$, the predicted selectivity is in general significantly greater than the observed situation. Most significantly, there is not a singular comparison where the latter situation is reversed. This is important because the Cieplak effect^{2,8} operates to reinforce the diastereoselectivity induced by electrostatic interactions. Perhaps the most pertinent substituent with respect to revealing the importance of transition-state hyperconjugation, or otherwise, is Me₃Sn. Previous reactivity studies have drawn attention to the importance of double hyperconjugation for this powerful σ -electron donor group.^{11,27,28} Note, however, that the selectivity exerted by this group (Tables

Table 4. Calculated Polar-Field Induced II-Facial Selectivities^{*} vs Observed Product Distributions for the Reduction of 5-Substituted (X) Adamantan-2-ones 1 $(\mathbf{Y} = \mathbf{\dot{O}})$

		(,			
		obsd		calcd ^a		
Х	σ_F^b	% E	% Z	% E	% Z	
NO ₂	0.62	75 (75) ^{c,d}	25 (25) ^{c,d}	81	19	
CN	0.54	69 (68) ^{c,d}	31 (32) ^{c,d}	78	22	
CF ₃	0.42	59e	41 ^e	73	27	
COOCH ₃	0.29	57 (55)°	43 (45)°	66	34	
F	0.41	59/	41/	72	28	
Cl	0.43	63⁄	371	73	27	
Br	0.44	60/	40′	74	26	
I	0.41	64⁄	36/	72	38	
OCH ₃	0.30	64 (64)°	36 (36)°	67	33	
OCOCH ₃	0.37	62 (63)°	38 (37)°	70	30	
$N(CH_3)_2$	0.28	65 (66)°	35 (34)°	66	34	
C ₆ H ₅	0.17	58 (59)°	42 (41)°	60	40	
CH ₃	0.03#	(51)¢	(49)°	52	48	
$C(CH_3)_3$	0.02^{h}	50 ^e	50e	51	49	
Si(CH ₃) ₃	0.01 ^h	50/	501	50	50	
$Sn(CH_3)_3$	0.02 ^h	48/	52 ^f	51	49	
$Sn(CH_3)_3$	-0.04 ⁱ	48 ^f	52 ^f	48	52	

^a log $[Z]/[E] = \rho_{FS}\sigma_{F}$; $\rho_{FS} = -1.01$. ^b $\sigma_{F} (\equiv \sigma_{I})$ values for CH₃OH taken from ref 12a. ^c This study. Ratios determined by ¹H and ¹³C NMR. The latter are listed in parentheses. ^d Capillary VPC analysis, 75/25 (X = NO₂) and 68/32 (X = CN). ^e Taken from ref 4a. ^f Taken from ref 11. ^g Taken from ref 12d. ^h Taken from ref 12b. ⁱ This study (see text).

4 and 5) is feeble (this study) and, moreover, the observed selectivity is in accord with expectations based purely on electrostatic grounds. Thus, the overall picture painted by all the results (Tables 4 and 5), namely, the unimportance of transition-state hyperconjugation, is strongly reinforced. It should be noted that the two $\sigma_{\rm F}$ values listed for Me₃Sn have been determined from the $^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ $SCS of 1-X-4-(p-fluorophenyl) bicyclo[2.2.2] octanes^{12b} and$ 1 (Y = CH₂, C β), respectively. As mentioned above, $\sigma_{\rm F}$ values for pendant groups may differ for model systems with quite different orientational relationships between the substituent and probe groups.

⁽²⁷⁾ Adcock, W.; Krstic, A. R.; Duggan, P. J.; Shiner, V. J., Jr.; Coope, (a) Advork, W. J. Am. Chem. Soc. 1990, 112, 3140.
 (28) Advork, W.; Coope, J.; Shiner, V. J., Jr.; Trout, N. A. J. Org.

Chem. 1990, 55, 1411.

Table 5. Calculated Polar-Field Induced II-Facial Selectivities^a vs Observed Product Distributions for the Methylation of 5-Substituted (X) Adamantan-2-ones 1 (Y = O)

		obsd ^b		cal	cdª
x	$\sigma_{\mathbf{F}}^{c}$	% E	% Z	% E	% Z
CN	0.59	68 ^d	32 ^d	90	10
CF_3	0.44	72 ^e	28e	84	16
COOCH ₃	0.22	55 ^d	45 ^d	69	31
F	0.39	66 (67) ^d	34 (33) ^{d,f}	81	19
Cl	0.43	62 (63) ^d	38 (37) ^d	83	17
Br	0.44	60 (61) ^d	40 (39) ^d	84	16
I	0.42	57 (57) ^d	43 (43) ^d	83	17
OCH ₃	0.19	63 (65) ^d	37 (35) ^d	67	33
$N(CH_3)_2$	0.12	63 (63)	37 (37)	61	39
C ₆ H ₅	0.15	62	38	64	36
CH ₃	0.05^{h}	54 (53)	46 (47)	55	45
Si(CH ₃) ₃	0.00 ^h	49	51	50	50
$Sn(CH_3)_3$	0.01 ^h	48 (36.5) ^s	52 (63.5) ^g	51	49
$Sn(CH_3)_3$	-0.04^{h}	48 (36.5)8	52 (63.5)8	46	54

^a log $[Z]/[E] = \rho_{FS}\sigma_{F}$; $\rho_{FS} = -1.61$. ^b This study. Determined by ¹³C NMR. Values in parentheses determined by ¹H NMR. ^c σ_{F} (= σ_1) values for c-C₆H₁₂ taken from ref 12a. ^d This study. Results by VPC are as follows: CN (67/33), COOCH₃ (53/47), F (67/33), CI (62/38), Br (57/43), I (55/45), and OCH₃ (63/37). ^e Taken from ref 4a. ^f 70/30 by VPC. See ref 4a. ^g Taken from ref 21b. ^h See footnotes h and i in Table 4.

Table 6. Calculated Polar-Field Induced II-Facial Selectivities^a vs Observed Product Distributions for the Hydrochlorination of 5-Substituted (X) 2-Methyleneadamantanes 1 (Y = CH₂)

		obsd (CH ₂ Cl ₂) ^b		obsd (calcda		
х	$\sigma_{\mathbf{F}}^{c}$	% E	% Z	% E	% Z	% E	% Z
CN	0.53	13	87			5	95
COOCH ₃	0.25	28 (29)	72 (71)	26	74	20	80
F	0.41	10 (5) ^d	90 (95) ^d	0 (0) ^d	$100 (100)^d$	9	91
Cl	0.43	17	83	3	97	8	92
Br	0.44	22	78	17	83	8	92
I	0.42	34	66	26	74	9	91
OCH ₃	0.24	14 (14)e	86 (86)e	15	85	21	79
C ₆ H ₅	0.17	35 (35)e	65 (65)e	34	66	28	72
CH ₃	0.03 ^f	39 (44)e	61 (56)e	44	56	46	54
Si(CH ₃) ₃	0.01#	65 (69) ^e	35 (31)e	50	50	49	51

^a log $[Z]/[E] = \rho_{FS}\sigma_{F}; \rho_{FS} = 2.451$. ^b This study. Ratios determined by ¹³C NMR. ^c $\sigma_{F} (\equiv \sigma_{1})$ values for CH₂Cl₂ taken from ref 12a. ^d Ratios determined by ¹⁹F NMR. ^e Ratios determined by ¹H NMR. ^f Taken from ref 12d. ^g Taken from ref 12b.

An examination of the data in Table 6 for electrophilic addition brings to light several noteworthy features. Firstly, it can be seen that the Me₃Si and Me groups (Group 14 substituents), two substituents with virtually no electrostatic field influence ($\sigma_{\rm F} \approx 0$),^{12b,d} exert significant effects on diastereoselectivity but clearly in opposite directions. The result strikingly highlights the differential charge demands of the C-Si and C-C bonds versus the C-H bond in double hyperconjugation,^{27,28} i.e., it is consistent with the hyperconjugative σ -electron-donor and -withdrawing character of these two groups, respectively, regulating the relative energies of the diastereomeric transition states proceeding from 5 and 6. Under free-ion conditions (NO_2CH_3 as solvent), where hyperconjugation as a stereoinductive factor is expected to be even more paramount (see above), the result for CH_3 is in line with that observed in CH_2Cl_2 and was expected. By contrast, the failure of Me₃Si to exert any influence on facial selectivity whatsoever by double hyperconjugation in NO₂- CH_3 is surprising. This is more so in the light of the stereochemical result (E/Z = 86/14) previously observed for the fluorination $(DAST/CH_2Cl_2)$ of (E)- and (Z)-5(trimethylsilyl)-2-adamantanols.¹¹ The latter reaction is similarly mediated by the formation of rapidly equilibrating free secondary ions. We believe the apparently dichotomous result for Me₃Si in NO₂CH₃ (Table 6) can be explained by invoking a long-range steric interaction by the relatively bulky substituent²⁹ in the free *E*-cation (8, $X = Me_3Si$) which is transmitted via the axial 4,9-hydrogen atoms (see 9). The consequential destabilizing interaction

would offset the energy gain as a result of double hyperconjugation. Optimization of the latter electronic mechanism (antiperiplanar relationship of participant orbitals) is also seriously compromised structurally by such a steric effect.³⁰ This steric phenomenon is apparently concealed by the results for HCl addition in CH₂Cl₂ to 1 (Y = CH₂; X = SiMe₃) because the fairly similar effective steric size for Cl and CH₃⁸¹ ensures that its contribution to the relative energies of the product-determining transition states (ion-pair-like; 5 and 6) essentially cancels out.

Secondly, a notable Group 14 substituent missing from the data in Table 6, as a result of its protolytic instability, is the Me₃Sn group. However, it is significant that direct epoxidation of 1 (Y = CH₂; X = SnMe₃) with *m*-chloroperbenzoic acid in CH₂Cl₂ provides a 50:50 mixture of the stereoisomeric epoxides (see Experimental Section). Thus, in this concerted electrophilic addition reaction, which is not mediated by carbocation formation, the powerful σ -electron-donor Me₃Sn group is merely an ineffectual bystander with respect to facial selectivity, as a consequence of its weak field effect ($\sigma_{\rm F} \approx 0$).^{12b}

Thirdly, it can be seen (Table 6) that although there is quite good agreement between the observed and calculated polar-field-induced selectivities in CH₂Cl₂ for some of the σ -electron-withdrawing substituents, there are several significant discrepancies, in particular, the selectivity order for the halogens (F > Cl > Br > 1 (observed) vs F ~ Cl \sim Br \sim I (calculated)). Given that the diastereoselectivity of this reaction is mainly governed by the differential hyperconjugative stabilization between the appropriate cationic species which, in turn, is more a function of the σ -inductive perturbation of C₅, the pattern of results is not particularly surprising. However, it highlights that data for the halogen subset (F, Cl, Br, and I) are imperative for reactivity studies in order to unambiguously reveal electronegativity effects (σ_{γ}) for σ -electron-withdrawing groups. These particular substituents have similar $\sigma_{\rm F}$ values but vastly different σ_x parameters.³² It is of interest to note that the effect of hyperconjugation of σ -electronwithdrawing groups on the stability of 4-substituted (X)

⁽²⁹⁾ Kitching, W.; Olszowy, H. A.; Drew, G. M.; Adcock, W. J. Org. Chem. 1982, 47, 5153.

⁽³⁰⁾ Krijiner, B.; Beverloo, H. B.; Verhoeven, J. W.; Reiss, C. A.; Goubitz, K.; Heijdeurijk, D. J. Am. Chem. Soc. 1989, 111, 4433 and references cited therein.

 ⁽³¹⁾ Hounshell, W. D.; Iroff, L. D.; Iverson, D. J.; Wroczynski, R. J.;
 Mislow, K. Isr. J. Chem. 1980, 20, 65 and references cited therein.
 (32) See ref 12 of ref 27.

Table 7. Product Distribution for the Hydrochlorination^a of Mixtures (*E* and *Z* Isomers) of 5-Substituted (X) 2-Methyladamantan-2-ols^b

	-		
	chlo	rides	· · · · · · · · · · · · · · · · · · ·
х	% E	% Z	analytical methods
F	27	73	¹³ C NMR
F	25	75	¹⁹ F NMR
Cl	30	70	¹³ C NMR
Cl	29	71	¹ H NMR
Br	39	61	¹³ C NMR
CH ₃	41	59	¹³ C NMR
CH ₃	41	59	¹ H NMR
Si(CH ₃) ₃	61	39	¹³ C NMR
Si(CH ₃) ₃	60	40	¹ H NMR
C ₆ H ₅	42	58	¹³ C NMR
p-FC ₆ H ₄	39	61	13C NMR
p-FC ₆ H ₄	39	61	¹⁹ F NMR
p-BrČ ₆ H ₄	38	62	¹³ C NMR
p-CHOC.H.	43	57	¹³ C NMR

 $^a\,\rm HCl/CaCl_2/CH_2Cl_2.\,^bSee$ Tables 2 and 5 for composition of alcohol mixtures.

bicyclo[2.2.2]oct-1-yl³³ and (*E*)-5-substituted (X) adamant-2-yl cation systems³⁴ (10 and 11, respectively) is blurred as the appropriate solvolysis rates correlate very well against an alternative electrostatic field parameter ($\sigma_{\rm I}^{\rm q}$).³⁵ However, the fact that the δ interaction is stronger than the γ interaction in the 2-adamantyl ion³⁴ (substituent at C5 and C4, respectively) exposes the hyperconjugative mode of transmission of polar effects for electronegative substituents.³⁶ The importance of double hyperconjugation as a mode of stabilization of 10 and 11 is unequivocal^{11,27,28} for good σ -electron-donor groups (Me₃Si and Me₃Sn) as their $\sigma_{\rm F}$ values are effectively zero.

It is noteworthy that the electronegativity order of selectivity of HCl addition for the halogen substituents (F > Cl > Br > I) is also observed in NO₂CH₃ (Table 6). The enhanced facial selectivity for these groups in the latter solvent can be ascribed to stabilization by hyperconjugation being more pronounced for the free ions (7 and 8) then the ion-pair-like transition states (5 and 6). On this point it is important to note that there is no evidence in the literature to suggest that the σ -electron-withdrawing power of halogen substituents (C⁶⁺-X⁶⁻) is increased by greater separation of charge in the σ bonds and dispersion of charge at the *negative* end of the dipole, which protrudes into the media, as a result of solvation by highly polar aprotic solvents.

It is of interest to note that the selectivity of these tertiary 2-adamantyl cation-mediated reactions is significantly suppressed (Table 7) when the tertiary methyl alcohols 1 (Y = Me, OH) are used to generate the free cation with HCl in CH₂Cl₂^{4a} containing anhydrous CaCl₂. This phenomenon has been previously noted by le Noble et al.³⁷ for the situation where X = F. These workers have suggested that it may have something to do with the presence of a water molecule in the activated complex. Unfortunately, even with a much larger data base we are unable to add constructively to this suggestion. However, a noteworthy result is the significant selectivity observed for the Me₃Si group (Table 7) which is similar to that

Table 8. Product Distribution in the Fluorination^a of Mixtures (E and Z Isomers) of 5-Substituted (X) Adamantan-2-ols^b

fluorides		analytical		fluo	rides	analytical	
X	% E	% Z	method	x	% E	% Z	method
NO2 ^c	5	95	13C NMR	OCOCH3°	20	80	VPC
NO2 ^c	9	91	VPC	OCOCH ₈ c	22	78	¹⁹ F NMR
NO2 ^c	7	93	¹⁹ F NMR	N(CH ₃) _{2^c}	28	72	¹⁹ F NMR
CN ^c	11	89	18C NMR	CH ₃ ^c	41	59	18C NMR
CN ^c	11	89	VPC	CH3 ^c	38	62	¹ H NMR
CN°	14	86	¹⁹ F NMR	CH3 ^c	36	64	¹⁹ F NMR
CO ₂ CH ₃ ^c	30	70	18C NMR	Si(CH ₃)3 ^d	84	16	18C NMR
CO ₂ CH ₃ ^c	28	72	VPC	Si(CH ₃)3 ^d	86	14	19F NMR
CO ₂ CH _{3^c}	30	70	¹⁹ F NMR	Sn(CH ₃) ₃ ^d	100	0	18C NMR
Fd	10	90	¹⁸ C NMR	$Sn(CH_3)_3^d$	>98	trace	19F NMR
F ^d	6	94	VPC	C ₆ H ₅ ^d	41	59	18C NMR
F ^d	4	96	¹⁹ F NMR	C ₆ H ₅ ^d	38	62	19F NMR
Cld	15	85	13C NMR	p-NO ₂ C ₆ H ₄ ^d	35	65	13C NMR
Cld	15	85	VPC	p-NO ₂ C ₆ H ₄ ^d	35	65	¹⁹ F NMR
Cld	16	84	¹⁹ F NMR	p-CNC ₆ H ₄ ¢	35	65	18C NMR
Brď	18	82	¹³ C NMR	p-CNC ₆ H ₄ c	35	65	19F NMR
Br ^d	19	81	VPC	p-CO ₂ CH ₃ C ₆ H ₄ °	39	61	18C NMR
Brď	18	82	19F NMR	p-CO ₂ CH ₈ C ₆ H ₄ ^c	41	5 9	¹⁹ F NMR
Iď	32	68	18C NMR	p-FC6H4°	41	59	¹³ C NMR
Iď	35	65	VPC	p-FC ₆ H ₄ °	43	57	¹⁹ F NMR
Iď	38	62	¹⁹ F NMR	p-BrC ₆ H ₄ °	36	64	18C NMR
OCH ₈ °	34	66	18C NMR	p-BrCeH4°	38	62	¹⁹ F NMR
OCH3 ^c	33	67	VPC	p-CH ₃ OC ₆ H ₄	45	55	18C NMR
OCH ₃ e	35	65	¹⁹ F NMR	p-CH ₃ OC ₆ H ₄	46	54	19F NMR
OCOČH₃°	20	80	¹⁸ C NMR	p-(CH ₃)2NC6H4°	39	61	¹⁹ F NMR

^a DAST/CH₂Cl₂. ^b See Tables 2 and 4 for composition of alcohol mixtures. ^c See ref 14. ^d Taken from ref 11.

observed for HCl addition to 1 ($Y = CH_2$; $X = SiMe_3$) in CH_2Cl_2 but not NO_2CH_3 (Table 6). In accord with the aforementioned rationalization of the selectivity difference of the Me₃Si group for HCl addition to 1 ($Y = CH_2$) in CH_2Cl_2 and NO_2CH_3 , the selectivity result from the alcohols for this substituent (Table 7) suggests that the initially formed free cations may first lose a proton to yield the alkene which then leads to the product distribution being mediated by the formation of ion-pair-like (5 and 6) diastereometic transition states.

Finally, for the sake of completeness, it should be noted that the results for fluorination (DAST/CH₂Cl₂) of 5-substituted (X) adamantan-2-ols (Table 8) also exhibit product ratios largely governed by hyperconjugation. The electronegativity order of facial selectivity for the halogen substituents is particularly pertinent with respect to the comments above concerning σ -electron-acceptor groups. However, in examining these results it is important to bear in mind two points. Firstly, the fluoride mixtures were obtained from mixtures of alcohols (E/Z) whose compositions are shown in Tables 2 and 4. Secondly, the fluorination of pure epimers (E or Z) for X = Br and SiMe₃ reveal that the isomerization of free secondary 2-adamantyl cations in CH₂Cl₂ may not be complete when the 5-substituent is a strong σ -electron acceptor.¹¹ In the light of the sensitivity of facial selectivity of HCl addition to 1 (Y = CH_2 ; X = $p_2SC_6H_4$) in CH_2Cl_2 (Table 6) to the electronic character of the substituent (S) on the phenyl ring (see Figure 3), the apparent invariance to S of the product ratios obtained from the fluorination $(DAST/CH_2Cl_2)$ of a series of para-substituted (S) 5-phenyladamantan-2-ols (Table 8) is puzzling. The latter situation was encountered for HCl addition to 1 (Y = CH₂; X = p-SC₆H₄) in NO₂CH₃ (Table 6) and was rationalized in terms of a drastic attenuation of the field effect by the much higher effective dielectric constant in this highly polar solvent. However, the fluorination results of the 5-p-SC₆H₄-2-adamantanols

⁽³³⁾ Grob, C. A.; Rich, R. Tetrahedron Lett. 1978, 663; Helv. Chim. Acta 1979, 62, 2793. Bielmann, R.; Grob, C. A.; Küry, D.; Yao, G. W. Helv. Chim. Acta 1985, 68, 2158.

⁽³⁴⁾ Grob, C. A.; Wang, G.; Yang, C. Tetrahedron Lett. 1987, 28, 1247. (35) See ref 3 of ref 27.

^{(36) (}a) See ref 15 of ref 36b. (b) Lin, M.-H.; Cheung, C. K.; le Noble, W. J. J. Am. Chem. Soc. 1988, 110, 6562.

⁽³⁷⁾ Svrivastava, S.; le Noble, W. J. J. Am. Chem. Soc. 1987, 109, 5874.

(Table 8) in CH_2Cl_2 cannot be similarly explained away and, therefore, must remain a conundrum.

Conclusions

The results disclosed above strongly suggest that it is unnecessary to invoke transition-state hyperconjugation in terms of Cieplak's model^{2,8,9} to explain π -facial selectivity for the reduction and methylation of 5-substituted (X) 2-adamantanones 1(Y = O). For the most part, the results appear to be accommodated by an electrostatic field model.³ However, the significant discrepancies between the calculated polar-field induced diastereoselectivities and the observed results for strongly polar substituents raise the possibility of transition-state hyperconjugation (Felkin-Anh model)⁹ as a significant factor in some cases. The results of this study also suggest that the qualitative success of Dannenberg et al.'s³⁸ polarized π -frontier molecular orbital (PPFMO) method in predicting diastereofacial selectivities for the reduction of norbornanones and adamantanones is probably due to the dominant perturbation of the frontier orbitals by electrostatic field effects. By contrast, hyperconjugation is clearly the dominant factor governing the diastereoselectivity of the hydrochlorination of 5-substituted (X) 2-methyleneadamantanes 1 (Y = CH_2). This highlights the known enhancement of hyperconjugative interactions in electrondeficient species such as carbocations. However, the product distribution results for the epoxidation of 1 (Y = CH_2 ; X = SnMe₃) suggest that the stereochemical course of electrophilic addition reactions not mediated by carbocations^{2,5b,6b,37,39} is most likely regulated by direct field effects.7g

Finally, in view of the continuing debate concerning the relative electron-donating ability of C-C and C-H bonds in saturated systems,^{2,3,40} it is important to emphasize that the results of this study clearly indicate that CH_3 is a σ -electron withdrawing group. This is in accord with other studies of 5-methyl-substituted 2-adamantyl derivatives.^{4a,11,14,24,34,41} Thus, coupled with NMR and reactivity data from other polycycloalkane derivatives (1,4-disubstituted bicyclo[2.2.2]octanes,^{12a,b,27,33} 1,4-disubstituted bicyclo[2.2.1]heptanes,42 and 1,4-disubstituted cubanes;43 2,6-disubstituted bicyclo[2.2.1]heptanes;44 1,3-disubstituted adamantanes^{12c,45} and 1,3-disbustituted bicyclo-[1.1.1]pentanes;⁴⁴ and 1,5-disubstituted bicyclo[3.1.1]heptanes⁴⁷ and 1.5-disubstituted trishomobarrelenes⁴⁸), the experimental evidence is overwhelmingly in favor of C-H being a better donor than C-C for γ - and δ -interactions in the neutral ground-state and electron-deficient species. Most importantly, it should be borne in mind that rigid polycycloalkanes are the archetypal model substrates for delineating electronic influences unequivocally in the absence of complicating steric and conformational phenomena. Although there is still no general consensus concerning a group electronegativity scale, it is pertinent to note that most of the various scales rank CH_3 as being more electronegative than H,49 which is in line with the above conclusion.

Experimental Section

General. Melting and boiling points are uncorrected. Liquid samples were purified by distillation on a Kugelrohr apparatus (Buchi, GKR-50). Hence, boiling points quoted pertain to this equipment. Analytical vapor-phase chromatographic (VPC) analyses were performed on a Perkin-Elmer 8410 gas chromatograph using a 15-m capillary column (RSL-300, 0.53-mm column). Mass spectra were recorded on a Kratos MS25RF spectrometer. NMR spectra were recorded on JEOL FX-90Q and Varian Gemini-300 spectrometers operating at 22.53 MHz (13C), 84.26 MHz (19F), and 300.75 MHz (1H), 75.46 MHz (18C), 282.328 MHz, (19F), and 111.9 MHz (119Sn), respectively. The CDCl₃ solutions for recording the ¹³C NMR spectra for SCS determinations were all ca. 0.1 M or less. Routine ¹H NMR spectra were measured with a Hitachi RR-1200 (60 MHz).

All the anhydrous solvents used in this study were dried by standard procedures.

Compounds. Adamantan-2-one was purchased from the Aldrich Chemical Co., Inc.

Synthesis of 5-Substituted (X) Adamantan-2-ones 1 (Y = 0). Several of the ketones (X = $OH_{,50}$ F,¹¹ Cl,^{50,51} Br,⁵¹ I,¹¹ COOH, 52 COOCH3, 52 C6H5, 50 p-NO2C6H4, 11 p-NH2C6H4, 11 p-CH3-OC₆H₄,^{4a} SiMe₃,¹¹ and SnMe₃¹¹) were prepared by literature procedures. Details of the standard functionalizing procedures employed for preparing the new substituted derivatives of 1 (Y = O; $X = CONH_2$, CN, NH_2 , NO_2 , NMe_2 , OCH_3 , $OCOCH_3$, p-CNC₆H₄, p-COOCH₃C₆H₄, p-FC₆H₄, p-BrC₆H₄, and p-Me₂-NC₆H₄) together with yields, physical properties, and mass and ¹³C NMR spectral data are contained in the supplementary material. A new synthesis of 5-methyladamantan-2-one (1; Y = O, $X = CH_3$) is described below.

Synthesis of 5-Substituted (X) 2-Methyleneadamantanes 1 ($Y = CH_2$). Except for the methyl and trimethylstannyl derivatives ($\tilde{X} = CH_3$ and $SnMe_3$, respectively; see below), all the alkenes (X = H, CN, COOCH₃, F, Cl, Br, I, CH₃O, SiMe₃, C₆H₅, p-CNC₆H₄, p-FC₆H₄, p-BrC₆H₄, and p-CH₃OC₆H₄) were prepared from the corresponding ketones by a standard procedure described below for the bromo derivative (X = Br). Details of the physical properties, NMR, and mass spectral data are contained in the supplementary material.

1-Bromo-4-methyleneadamantane $(1, Y = CH_2; X = Br)$. By use of a procedure similar to that of Olah et al.,⁵³ a solution of n-butyllithium (21 mL of 1.6 M hexane solution; 33.63 mmol) was added over a 5-min period to a stirred slurry of methyltriphenylphosphonium iodide (13.59 g, 33.63 mmol) in dry ether (80 mL) under N₂. The reaction mixture was allowed to stir for 4 h at room temperature before adding dropwise a solution of 5-bromoadamantan-2-one (7 g, 30.58 mmol) in dry ether (80 mL). The mixture was stirred overnight, the precipitate was removed by filtration, and the filter cake was washed with a little ether.

(50) Geluk, H. W. Synthesis 1972, 374.

^{(38) (}a) Huang, X. L.; Dannenberg, J. J.; Duran, M.; Bertrán, J. J. Am. Chem. Soc. 1993, 115, 4024. (b) Huang, X. L.; Dannenberg, J. J. J. Am. Chem. Soc. 1993, 115, 6017. (39) Johnson, C. R.; Tait, B. D.; Cieplak, A. J. J. Am. Chem. Soc. 1987,

^{109. 5875.}

⁽⁴⁰⁾ Li, H.; Mehta, G.; Padma, S.; le Noble, W. J. J. Org. Chem. 1991, 56, 2006 and references cited therein.

⁽⁴¹⁾ Sinnott, M. L.; Whiting, M. C. J. Chem. Soc., Perkin Trans. 2 1975, 1446. Bone, J. A.; Pritt, J. R.; Whiting, M. C. Ibid. 1975, 1447.

⁽⁴²⁾ Adcock, W.; Abeywickrema, A. N.; Kok, G. B. J. Org. Chem. 1984, 49, 1387.

 ^{(43) (}a) Eaton, P. E.; Yang, C.-X.; Xiong, Y. J. Am. Chem. Soc. 1990, 112, 3225.
 (b) Mortiarty, R. M.; Tuladhar, S. M.; Penmasta, R.; Awasthi, A. K. J. Am. Chem. Soc. 1990, 112, 3228.

⁽⁴⁴⁾ Altmann-Schaffner, E.; Grob, C. A. Helv. Chim. Acta 1987, 70, 43 and references cited therein.

 ⁽⁴⁵⁾ Fischer, W.; Grob, C. A. Helv. Chim. Acta 1978, 61, 1588. Grob,
 C. A.; Schaub, B. Helv. Chim. Acta 1982, 65, 1720.
 (46) Grob, C. A.; Yang, C. X.; Della, E. W.; Taylor, D. K. Tetrahedron
 Lett. 1991, 32, 5945. Taylor, D. K. Ph.D. Dissertation, The Flinders University of South Australia, 1993.

⁽⁴⁷⁾ Elsey, G. M. Ph.D. Dissertation, The Flinders University of South Australia, 1993.

⁽⁴⁸⁾ De Meijere, A. In Caged Hydrocarbons; Olah, G. A., Ed.; Wiley: New York, 1990; Chapter 8, pp 284–285. (49) (a) Marriott, S.; Reynolds, W. F.; Taft, R. W.; Topsom, R. D. J.

Org. Chem. 1989, 49, 959 and references cited therein. (b) Boyd, R. J.; Boyd, S. L. J. Am. Chem. Soc. 1992, 114, 1652 and references cited therein. (c) Reed, L. H.; Allen, L. C. J. Phys. Chem. 1992, 96, 157 and references cited therein.

 ⁽⁵¹⁾ Geluk, H. W.; Schlatmann, M. A. Tetrahedron 1968, 24, 5369.
 (52) Lantvoev, V. I. J. Org. Chem. USSR (Engl. Trans.) 1976, 12, 2292.

⁽⁵³⁾ Olah, G. A.; Krishnamurthy, V. V. J. Am. Chem. Soc. 1982, 104, 3987

The combined extracts were dried (MgSO₄), and the solvent was removed in vacuo to afford a yellow oil. Chromatography (silica gel/hexane as eluent) gave the title compound as a colorless oil (4.79 g, 72%): $n_D^{25} = 1.5500$; ¹H NMR (CDCl₃ δ 1.81–1.86 (m, 4H), 2.43–2.63 (m, 9H), 4.57 (s, 2H); ¹³C NMR (CDCl₃, relative to Me₄Si) δ 64.75 (Cl), 50.44 (C2,9), 42.21 (C3,5), 153.65 (C4), 37.54 (C6,10), 32.37 (C7), 48.93 (C8), 103.58 (C11); MS m/z (M⁺) calcd for C₁₁H₁₅Br 226.0357, 228.0337, found 226.0370, 228.0337.

1-Methyl-4-methyleneadamantane $(1, Y = CH_2; X = CH_3)$. Trimethylaluminum (2.06 mL, 21.60 mmol) was added dropwise over a 1-min period to a well-stirred solution of 1-bromo-4methyleneadamantane (4.90 g, 21.60 mmol) in dry dichloromethane (130 mL) maintained at -80 °C under N₂. The reaction mixture was allowed to warm to room temperature and then stirred for 1 h before cooling back to -80 °C. The mixture was then carefully quenched with a solution of pyridine (50 mL) and methanol (25 mL) in dichloromethane (25 mL). After 1.5 h at room temperature, the solvent was evaporated in vacuo and the residue distilled (Kugelrohr, 40 °C/0.5 mm) to afford a colorless oil (2.20 g, 62%): ¹H NMR (CDCl₃) δ 0.76 (s, 3H), 1.50–1.77 (m, 11H), 2.52 (bs, 2H), 4.50 (s, 2H); ¹³C NMR (CDCl₃, relative to Me4Si) & 30.09 (C1), 46.24 (C2,9), 39.29 (C3,5), 157.67 (C4), 38.87 (C6,10), 28.80 (C7), 44.24 (C8), 100.86 (C11), 30.50 (CH₃); MS m/z (M⁺) calcd for C₁₂H₁₈ 162.1408, found 162.1389.

5-Methyladamantan-2-one (1, Y = O; $X = CH_3$). Ozone (ca. 5% in O_2) was bubbled into a well-stirred solution of 1-methyl-4-methyleneadamantane (1g, 6.09 mmol) in dry dichloromethane (100 mL) maintained at -78 °C. After a pale blue coloration developed (ca. 60 min), the gas flow was stopped, and dimethyl sulfide (0.46 mL, 6.84 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and then stirred overnight. The solvent was evaporated in vacuo, and the residual orange oil was chromatographed (alumina/pentane as eluent) to afford a colorless oil which solidified on standing. Careful sublimation (30 °C/0.5 mm) gave the title compound as a white solid (0.5 g, 50%), mp 104-106 °C. Recrystallization (2 \times 1) from petroleum ether (-78 °C) followed by further chromatography (alumina/pentane as eluent) and sublimation (40 °C/0.1 mm) gave a white crystalline solid: mp 112-113 °C (lit.⁵⁴ 125-126 °C); ¹H NMR (CDCl₃, 300 MHz) δ 0.86 (s, 3H), 1.69-1.80 (m, 6H), 1.92-1.94 (m, 4H), 2.08 (bs, 1H), 2.48 (bs, 2H); ¹³C NMR (CDCl₃, relative to Me₄Si) 46.63 (C1,3), 218.72 (C2), 45.57 (C4,9), 30.02 (C5), 43.35 (C6), 28.04 (C7), 38.62 (C8,10), 29.25 (CH₃); MS m/z (M⁺) calcd for C₁₁H₁₆ \supset 164.1201, found 164.1185. Anal. Calcd for C₁₁H₁₆O: C, 80.50; H, 9.75; O, 9.75. Found: C, 80.15; H, 9.91; O, 9.49.

2-Methylene-5-(trimethylstannyl)adamantane (1, Y = CH₂; X = SnMe₃). A solution of (trimethylstannyl)lithium (ca. 5.0 mmol) in anhydrous THF prepared in the standard way⁵⁵ was added dropwise to a solution of 1-bromo-4-methyleneada-mantane (0.46 g, 2.02 mmol) in anhydrous THF (7 mL) at 0 °C under a nitrogen atmosphere. A standard workup followed by Kugelrohr distillation (50 °C/0.04 mm) afforded the title compound as a white solid (310 mg, 49%): mp 39-40 °C; ¹H NMR (CDCl₃) δ -0.04 (s, 9H; J_{Sn-H} = 47.94, 50.16 Hz), 1.90-2.01 (m, 11H), 2.48 (bs, 2H), 4.52 (s, 2H); ¹³C NMR (CDCl₃, relative Me₄-Si) δ 40.20 (C1,3), 158.43 (C2), 44.32 (C4,9), 28.00 (C5), 41.71 (C6), 29.05 (C7), 39.65 (C8,10), 100.22 (C11), -12.93 (SnMe₃; ¹J_{C-Sn} = 282.40, 295.10 Hz); MS m/z (M⁺) calcd for C₁₄H₂₄Sn 312.0945 (based on ¹²⁰Sn), found 312.0934.

Epoxidation of 2-Methylene-5-(trimethylstannyl)adamantane (1, Y = CH₂; X = SnMe₃). Following a procedure outlined by Cieplak et al.,⁵⁶ a solution of *m*-chloroperbenzoic acid (83 mg, 0.48 mmol) in dry dichloromethane (1 mL) was added to a stirred solution of the tin-alkene (100 mg, 0.032 mmol) in dry dichloromethane (1.5 mL) at 0 °C before an aqueous solution of Na₂SO₃ was added. The mixture was extracted with dichloromethane which was then washed with a saturated aqueous NaHCO₃ solution, dried (MgSO₄), and evaporated in vacuo to afford a white solid (100 mg, 95%). An analysis by ^{13}C NMR indicated a 50:50 mixture of (E)- and (Z)-5-(trimethylstannyl)-2-adamantanespirooxiranes. This was confirmed by VPC and ¹¹⁹Sn NMR. (E)-5-(Trimethylstannyl)-2-adamantanespirooxirane: ${}^{13}CNMR$ (CDCl₃, relative to Me₄Si) δ 36.77 (C1,3), 64.67 (C2), 41.31 (C4,9), 26.14 (C5), 41.44 (C6), 27.80 (C7), 35.15 (C8,10), 54.77 (C11), -12.88 (SnMe₈); ¹¹⁹Sn NMR (CDCl₃, relative to Me₄Sn) δ 1.18. (Z)-(Trimethylstannyl)-2-adamantanespirooxirane: ${}^{13}CNMR$ (CDCl₃, relative to Me₄Si) δ 36.73 (C1.3), 64.76 (C2), 39.42 (C4,9), 26.11 (C5), 41.44 (C6), 27.87 (C7), 36.94 $(C8,10), 54.70\,(C11), -12.81\,(SnMe_3); {}^{119}Sn\,NMR\,(CDCl_3, relative$ to Me₄Sn) δ -0.80. The spectra were assigned by the additivity of substituent effects on chemical shifts of the adamantane ring.57 E-Isomer (calcd): 36.44 (C1,3), 64.46 (C2), 41.04 (C4,9), 26.71 (C5), 41.26 (C6), 27.55 (C7), 34.96 (C8,10), 54.65 (C11). Z-Isomer (calcd): 36.44 (C1,3), 64.46 (C2), 39.25 (C4,9), 26.58 (C5), 41.26 (C6), 27.68 (C7), 36.75 (C8,10), 54.65 (C11).

A duplicate experiment confirmed the above results.

General Procedure for Sodium Borohydride Reduction of Ketones 1 (Y = O). The procedure was identical with that previously described.¹¹ ¹³C NMR chemical shift data for the (*E*)- and (*Z*)-5-substituted (X) 2-adamantanols 1 (Y = H, OH), which were assigned by additivity methodology,⁵⁷ are contained in the supplementary material.

General Procedure for Methylation of Ketones 1 (Y = O). To a well-stirred solution of the ketone (100 mg) in anhydrous ether (3-5 mL) maintained at 0 °C was added an excess of methyllithium (1.5-2.0 mol equiv). The mixture was stirred at room temperature overnight, diluted with ether, washed with saturated aqueous NH₄Cl, and then dried (Na₂SO₄). After filtration and solvent evaporation, the methyl alcohol products (80-90%) were analyzed.

Ketones possessing sensitive functionality (X = Br, I, CN, p-BrC₆H₄, p-CNC₆H₄, p-CO₂CH₃C₆H₄, and CO₂CH₃) were treated with 1 mol equiv of methyllithium. ¹³C NMR chemical shift data for the 5-substituted (X) (*E*)- and (*Z*)-2-methyl 2-adamantanols 1 (Y = CH₃, OH), which were assigned by additivity methodology,⁵⁷ are contained in the supplementary material.

General Procedure for Hydrochlorination of Alkenes 1 ($Y = CH_2$). To a well-stirred solution of the alkene (30 mg) in dry dichloromethane or nitromethane (3 mL) maintained at 0 °C under nitrogen was added a saturated solution of HCl gas in CH₂Cl₂ or NO₂CH₃ (4 mL). The mixture was stirred at room temperature overnight (except for the iodoalkene, X = I, which was allowed to stir for only 1 h), followed by solvent evaporation to yield the methyl chloride products quantitatively. These were analyzed by NMR. ¹³C NMR chemical shift data for the 5-substituted (X) (*E*)- and (*Z*)-2-chloro-2-methyladamantanes 1 (Y = Cl, CH₃), which were assigned by additivity methodology,⁵⁷ are contained in the supplementary material.

Acknowledgment. We are grateful to the Australian Research Council for partial financial support of this work. We thank Dr. W. Kitching (University of Queensland) for providing access to their high-field NMR facility (500 MHz).

Supplementary Material Available: Experimental procedures and data of ketone derivatives 1 (Y = O), melting points, refractive indices, and exact mass data of the alkene derivatives of 1 (Y = CH₂), and ¹³C NMR data for the ketones and alkenes 1 (Y = O and CH₂) as well as the (E)- and (Z)-isomers of the secondary and tertiary alcohols 1 (Y = H, OH and CH₃, OH, respectively) and the methyl chlorides 1 (Y = CH₃, Cl) (15 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽⁵⁴⁾ Bone, J. A.; Pritt, J. R.; Whiting, M. C. J. Chem. Soc., Perkin Trans. 2 1972, 2644.

⁽⁵⁵⁾ Tamborski, C.; Ford, F. E.; Soloski, E. J. J. Org. Chem. 1963, 28, 237.

⁽⁵⁶⁾ Cieplak, A. S.; Tait, B. D.; Johnson, C. R. J. Am. Chem. Soc. 1989, 111, 8874.

⁽⁵⁷⁾ Srivastava, S.; Cheung, C. K.; le Noble, W. J. Magn. Reson. Chem. 1985, 23, 232.